新能源SOH是什么,温控设置怎么调?
1、下限偏差告警设置:按SET键选择显示“SLP”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。该参数表示告警点低于主控设定点的相差值。
2、上限偏差告警设置:按SET键选择显示“SHP”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。该参数表示告警点高于主控设定点的相差值。
3、比例范围设置:按SET键选择显示“P”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。“P”值越大,温控器的主控继电器输出的灵敏度越低,“P”值越小,温控器的主控继电器输出的灵敏度越高。
4、积分时间设置:按SET键选择显示“I”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。设定的积分时间越短,积分作用越强。
5、微分时间设置:按SET键选择显示“D”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。仪表设定的微分时间越长,则以微分作用进行的修正越强。
6、比例周期设置:按SET键选择显示“T”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数。
7、自整定设置:按SET键选择显示“Aτ”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数;设置为“00”表示自整定关闭,设置为“01”表示自整定启动。
8、锁参数设置:按SET键选择显示“OK”,绿色显示屏显示锁的状态,选择移位、递增、递减键设置或修改该项参数;设置为“00”表示不锁,设置为“01”表示只锁主控以外的参数,设置为“02”表示所有参数全锁定。参数被锁定后,别人不能修改,需修改时要解锁,即设置为“00”。
9、主控温度上限设置:按SET键选择显示“SOH”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数;该参数表示主控继电器动作温度不能高于此值,否则,主控设定温度无效
10、温度修正设置:按SET键选择显示“SC”,绿色显示屏显示该项参数的数值,选择移位、递增、递减键设置或修改该项参数;当温控器长时间运行后产生测量偏差时,就可使用该项功能修正误差。如测量值偏小2℃时,即可设置该项参数为02,若测量值偏大2℃时,即可设置该项参数为-2。
在第二设定区时,按SET键超过5秒钟后,系统将保存设置参数并退出设定状态,返回正常状态。在设定状态设定完成后,如不按正确操作退出设定状态,30秒后,系统将自动退出设定状态,你之前所设置的参数被宣布无效
什么是新能源汽车的三纵三横?
导读
在政策扶持下,2015年中国电动汽车行业迎来了爆发式的增长。但是在飞速增长的数字背后,(中国电动车)市场以及周边配套设备的发展目前仍处于起步阶段,众多汽车厂商对于未来新能源汽车往往是盲目跟风,同时也没有长期的系统性规划,这就导致一系列问题的产生。
自2015年年初以来,“政策补贴”成为新能源汽车产业发展的重要因素,甚至有些专家认为补贴数额的大小与电动车产业的发展成正比。但事实却证明,由国家单向主导技术路线的做法是欠妥当的,2015年中国市场新能源汽车的销量达33万辆,仅占乘用车总销量的1.5%,其中绝大部分消费者的购买原因都与新能源补贴或地方补贴等相关优惠政策有关。而汽车厂商生产纯电动汽车更多的是以获取补贴金为目的,这就导致目前中国汽车的研发仅停留在“造车”阶段,从而忽略了新能源汽车关键技术的研发。
国内“三纵三横”格局形成
从2000年至2015年的十五年间,由工信部、科技部、财政部等国家几大部委在新能源汽车领域已累计投资近200亿元,基本确立了电动汽车“三纵三横”基本技术体系的形成(三纵:燃料电池汽车、混合动力汽车、纯电动汽车;三横:多能源动力总成系统、电机驱动系统和控制单元、动力电池和电池组管理系统)。“总体上以动力电气化为核心的新能源汽车技术及产业取得进步,但是在整车部分和核心零部件关键技术方面仍未突破技术瓶颈,与国际领先水平仍有较大差距。”同济大学校长助理汽车学院院长余卓平在“2016国际电动汽车测试开发人员高级培训班”上表示。
目前国内市场中的插电式混合动力车型与国外品牌相比,在电动机、变速器以及整车能量控制管理系统上还有差距,易出现动力模式切换不平顺、油耗偏高等问题。同时国内在售的电动汽车中大部分以现有车型的平台进行研发,其底盘一体化程度不高,整车轻量化程度需要进一步加强。
在电驱动总成方面,国内电驱动系统集成化程度很低,发动机及机电耦合装置的技术较国外相比很薄弱,关键技术依然被国外企业垄断。同时,国际主流的电机峰值功率达到3.8KW/kg,我国生产的大多在2.8-3.0KW/kg,电机驱动控制器功率密度为5-8KW/L,低于12-17KW/H的国际先进水平。
在电池系统方面,由于电池成组的开发以简单机械、电器连接为主缺乏完整的分析和热管理检测,导致电池制造成本偏高、比能量偏低、一致性程度不高;其次国内多数BMS系统功能简单,其SOC、SOH及SOF的算法精度不高,极易发生故障。未来电动汽车技术发展趋势和需求
2015年前后,国务院连续出台《中国制造2025》、《关于加快新能源汽车推广应用的指导意见》等政策。其中在《中国制造2025重点领域技术路线图》中明确提出提出,在2020年新能源汽车产业要在整车设计、动力电池、驱动电机等关键系统达到国际先进水平。并且在2025年前将中国市场中整体乘用车、商用车新车的油耗标准降低40%~50%。这进一步推动了未来中国市场中新能源汽车的技术含金量。
中国汽车技术研究中心副主任、国家电动汽车标委会主任委员吴志新就此指出指出:“以特斯拉为列,其车身的金属部分97%使用了铝合金,轻量化使他能够搭载多达85kwh的电池组,续航里程超过400km。另外,轻量化使得电机性能得到充分发挥,百公里加速度时间可达3.4秒。反观国内车型,其都以汽油车为制作蓝本,没有统一科学的技术平台,所以未来PHEV、REEV、BEV采用多能源一体化底盘。”
未来电动汽车、插电式混合动力汽车由于电池模组和电动机模组的加入,使得底盘的配重比例需要重新优化,而统一的平台有利于新能源车型的整体化和轻量化。此外原生平台更利于电动车型的性能提升,采用轮毂电机/轮边电机的分布式驱动,操控更加灵活,能量优化空间更加大,是未来的发展趋势。
“随着互联网技术与汽车技术的不断融合,以电动汽车为储能终端的能源互联网与车联网达到最佳融合”吴志新主任补充道“未来PHEV、REEV、BEV将逐步实现智能化、网联化,汽车也将融入互联网生活中”。
目前市场中已经出现了这样的现象——众多新兴互联网企业“潜入”到汽车行业中,比如互联网最炙手可热的谷歌在做无人驾驶、李书福也声称无人驾驶是汽车的终极方向,沃尔沃已经在电动车方面进行着有益的探索,前不久传闻纷纷的北汽新能源与乐视的合作,还有前搜狐汽车CEO何毅离职后涉入电动车制造行业等等,都预示着未来电动车行业乃至整个汽车行业将进行一场智能化、互联化的变革。
中国的汽车产业正在迎来一场全新变革。在目前“互联网 ”的浪潮下,中国新能源汽车企业对于智能化、网络化有了很深的认识,同时通过积累了一些经验和做法,能够在新能源汽车产业化加速发展阶段,使互联网、大数据等数字技术与新能源汽车有机在一起,在政策的扶植下有望在电动汽车领域实现智能网联汽车的重大突破。
有那些主要要素?
BMS电池管理系统一般由检测功能单元与运算控制单元构成,如同智能产品一样,根据大量检测信号来协调整个系统的科学运行。
BMS中所指的检测一般会包括电池组的电压、电流和工作温度信息的采集,然后将数据传送给运算模块,运算模块将根据核心算法来处理这些数据,并给出下一步的策略和指令。那么BMS的运算模块就像是人的大脑一样重要,如同电脑的CPU一样,是整个系统最核心的部分。运算模块通常包含运算芯片硬件、基础软件、运行环境(RTE)以及核心管理软件。管理软件则是各大BMS厂家最核心的技术,因为优秀的算法即能保证系统的管理效率,又能将电池的性能发挥到极致。
图1 BMS结构图
BMS核心的功能一般包括:电池状态的估算算法和故障诊断以及保护。状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(State of Health)以及均衡和热管理。
SOC(State Of Charge)电池荷电状态
SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和健壮性极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。
下图是一个算法健壮性的例子。锂电芯采用的是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。
图2 BMS电池管理系统实时纠错修复
如上图中:磷酸铁锂电池算法强大的纠错能力:估算出的SOC(红色),安时积分法SOC(绿色),真正的SOC(蓝色)之间的曲线对比。即使是在电压极难测准的SOC 70%~90%区间(在此SOC区间开路电压仅仅变化2~3mV),开始SOC数据中20%的误差,本算法也能将其纠正在SOC为40~50%的区间,开路电压仅仅变化1mV,此时SOC估算误差小于4%,可见算法非常地优秀。
SOP(State Of Power) 电池能源状态
SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。
SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使是在SOC很低的时候。这么一来,所谓的一级保护二级保护在精确的SOP面前都是过眼云烟。不是说保护不重要。保护永远都是需要的。但是它不可能是BMS的核心技术。对于低温、旧电池以及很低的SOC来说,精确的SOP估算尤其重要。例如对于一组均衡很好的电池包,在比较高的SOC时,彼此间SOC可能相差很小,比如1-2%。但当SOC很低时,会出现某个电芯电压急速下降的情况。这个电芯的电压甚至比其他电池电压低1V多的情况。要保证每一个电芯电压始终不低于电池供应商给出的最低电压,SOP必须精确地估算出下一时刻这个电压急速下降的电芯的最大的输出功率以限制电池的使用从而保护电池。估算SOP的核心是实时在线估算电池的每一个等效阻抗。
SOH(State of Health) 电池健康状态
SOH 是指电池的健康状态。它包括两部分:安时容量和功率的变化。一般认为:当安时容量衰减20%或者输出功率衰减25%时,电池的寿命就到了。但是,这并不是说车就不能开了。对于纯电动车EV来说安时容量的估算更重要一些因为它与续航里程有直接关系而功率限制只是在低SOC的时候才重要。对于HEV或者PHEV来说,功率的变化更为重要这是因为电池的安时容量比较小,可以提供的功率有限尤其是在低温。对于SOH的要求也是既要高精度也要健壮性。而且没有健壮性的SOH是没有意义的。精度低于20%,就没有意义。SOH的估算也是基于SOC的估算。所以SOC的算法是算法的核心。电池状态估算算法是BMS的核心。其他的都是为这个算法服务的。
目前国内很多BMS厂商仍然在使用电流积分加开路电压的方法用开路电压计算初始SOC,然后用电流积分计算SOC的变化。这样如果启始点的电压错了,或者安时容量不准,岂不是要一错到底直到再次充满才能纠正?启始点的电压错会出错吗?经验告诉我们,会的,尽管概率很低。如果要保证万无一失,就不能只靠精确的启始点的电压来保证启始SOC的正确。
关于电池均衡
最近国内关于”主动均衡“技术非常关注,我们知道均衡的意义在于让所有的电池,保持一样的容量、电压状态。主动均衡的算法无外乎是同模组到电池相互均衡和不同模组之间的电池相互均衡,通用汽车公司早在6-7年前就已经完成了仿真验证,那国外厂商为什么基本上不用主动均衡呢?主要是考虑到成本问题。其实如果被动均衡就能够搞定,主动均衡的成本效益意义就不大啦。
有人说被动均衡浪费了很多电。所以不好。以96节串联的电池组为例,我们可以算出在最差情况下,被动均衡到底浪费了多少电。如果均衡电流是0.1A,一节电池在被均衡时大约要浪费0.4W。最差的情况是有95节电池都需要放电,所以,最差情况是有0.4X95=38W。还不如汽车的一个大灯(大约45瓦)费电。如果不是最差的情况,也许只要十几瓦甚至几瓦就够了。所以,尽管被动均衡浪费了一点电,但是它如果能够极大地延长电池的寿命,何乐不为呢?还有人说,对于比较大的安时容量的电池来说0.1A电流太小。如果能够把不均衡消灭在萌芽状态,就不会有无能为力情况的出现。如果电芯本身已经不能正常工作了,无论是主动均衡还是被动均衡都是无能为力的。所以,不能完全责怪电池的一致性不好。也需要从自身找原因。
笔者曾经做过的车里有两款PHEV的车,开了才几个月电池组内的SOC相差高达45%。而且由于SOC、SOP的问题,车在路上经常抛锚。公司一致认为是电池质量问题而且一致同意更换电池供应商。但是我仅仅只是更改了算法,就把均衡的问题解决了。而且是在公司明确规定不许充电的情况下做的。因为已经有一辆车由于电池问题出了事故。电池组中电芯SOC的差别由45%降到了3%。现在车已经行驶了十几万公里了。抛锚的问题再也没有发生过。
图3 动态均衡减小SOC差从45%到3%
目前国外大公司都在用在线实时估算开路电压来实现在线实时纠错。为什么在这里要强调实时在线估算?它的好处在哪里?通过实时在线估算估算出电池的所有等效参数,从而精确地估算出电池组的状态。实时在线估算极大的简化了电池的标定工作。使得对一致性不太好电池组状态的精确控制成为现实。实时在线估算使得无论是新电池还是老化后的电池,都能保持高精度(Accuracy)和超强的纠错能力(Robustness or error correction capability)。
目前世界上BMS做得最好的应该有什么特点呢?它可以在线实时估算电池组的电池参数从而精确估算出电池组的SOC、SOP、SOH,并且能够在短时间内纠正初始SOC超过10%的误差以及超过20%的安时容量的误差或者百分之几的电流测量误差。美国通用汽车公司在6年前研发沃蓝达时就做过一个实验来测试算法的健壮性:将3串并联在一起的电池组拿掉一串,这时内阻增加1/3、安时容量减小1/3。但是BMS并不知道。结果是SOC、SOP 在不到1分钟就全部纠正SOH随后也被精确地估算出来。这不仅说明算法的强大的纠错能力,而且说明算法可以在电池的整个生命周期中始终保持估算精度不变。
汽车电子需要保证在任何情况下都能工作。做一个好的算法需要化极大精力去解决那些发生概率只有千分之一、万分之一的情况。只有这样才能保证万无一失。比如说当车高速行驶在盘山公路上,大家所知道电池模型都会失效。这是因为持续的大电流会很快消耗掉电极表面的带电离子,而内部的离子来不及扩散出来,电池电压会急剧下降。估算出SOC会有较大的误差甚至会有10% 以上的误差。精确的数学模型就是数学物理方法教科书上讲的扩散方程。但是它无法用在车上因为数值解的运算量太大。BMS的CPU运算能力不够。这不仅是一个工程难题,也是一个数学和物理的难题。解决这样的技术难题,可以化解已知的几乎所有影响电池状态估算的极化问题。
长城汽车bms是谁的?
长城汽车bms是属于长城的,BMS的是电池管理系统(BATTERY MANAGEMENT SYSTEM)的简称。新能源汽车(使用锂电池)肯定要配备的BMS的。因为BMS就是电池PACK的管家。BMS要采集管理,电池PACK的单体电压数据,单体温度数据,PACK系统总压,充放电电流,充放电电压,绝缘阻值,电池SOH(生命)值,电池SOC(当前电量),将会和VCU(整车控制器)进行交互。
通过整车报文的形式来进行通讯,每家车厂都不一样,这属于保密级别
关于【新能源SOH是什么】和【温控设置怎么调】的介绍到此就结束了,热烈欢迎大家留言讨论,我们会积极回复。感谢您的收藏与支持!
发表评论